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ABSTRACT 
Two Hamiltonians are said to be strictly isospectral, if they have exactly same eigenvalue spectrum 
and S-matrix.  The wave functions and their dependent quantities are different but related.  This 
property is utilized to obtain the spectrum of charged particle in a class of non-uniform magnetic 
fields. 
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INTRODUCTION 
 
The spectrum of charged particle in uniform 
magnetic field consists of equally spaced 
landau levels which are infinitely degenerate 
[1, 2]. In general, it is difficult to solve the 
problem for non-uniform magnetic fields. 
However the ground state is exactly calculable 
and possesses degeneracy related to the total 
flux [3]. The case where the magnetic field is 
one-dimensional has been solved in [4]. The 
partial spectrum of charged particle in a class 
of non-uniform magnetic fields is obtained [5]. 
Applying supersymmetric quantum 
mechanical techniques [6-11], the isospectral 
Hamiltonian approach has been used to obtain 
the energy eigenvalue spectrum of charged 
particle for different cases of non-uniform 
magnetic fields. Although the idea of 
generating isospectral Hamiltonians using the 
Gelfand-Levitan approach [12] or the Darboux 
procedure [13] were known for some time, the 
supersymmetric quantum mechanical 
techniques make the procedure look simpler. 
When one deletes a bound state of a given 
potential V(x) and re-introduce the state, it 
involves solving a first order differential 
equation, which admits a free parameter. Thus, 
a set of one-dimensional family of potentials 
ˆ ( , )V x   can be constructed which have the 

exactly same energy spectrum as that of V(x). 

For any one dimensional potential (full line or 
half-line) with n bound states, one can 
construct an n-parameter family of strictly 
isospectral potentials, i.e. potentials with 
eigenvalues, reflection and transmission 
coefficients identical to those for original 
potential[8]. This aspect has been utilized 
profitably in many physical situations, which 
are of interest to various fields[14-20]. The 
Pauli operator was also studied in the 
framework of supersymmetric quantum 
mechanics in many papers [21-27]. 

In section 2, the isospectral Hamiltonian 
approach is discussed briefly and in section 3, 
we consider the problem of charged particle in 
the language of supersymmetric quantum 
mechanics and use isospectral Hamiltonian 
approach to obtain the spectrum of charged 
particle in a class of non-uniform magnetic 
fields in one and two dimensions.  
 
Isospectral Hamiltonian Approach 

The connection between the bound state 
wave functions and the potential is one of the 
key ingredients in solving exactly for the 
spectrum of one-dimensional potential 
problems. If the ground state wave function 

( 0 ) is known and its energy is chosen to be 
zero, the Hamiltonian12 can be factorized 

as AAH †
1  , (in units 12  m ), where 
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)(xWA dx
d   and )(† xWA dx

d   are 
the supersymmetric operators and 

)]([ln)( 0 xxW dx
d   is called the 

superpotential. We have
 

,†
1 nnnn AAH      …(1) 

),()(†
nnn AAAA    

).()(2 nnn AAH      …(2) 

Here  2H  is the supersymmetric partner Hamiltonian of 1H , with eigenfunctions nn A  . It is 

obvious that 2H  has the same eigenvalue spectrum as that of 1H , but for the case 00 A , 
which is the case of supersymmetry broken. The relation between Hamiltonians reads, 
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The superpotential relates the supersymmetric partner potentials )(1 xV  and )(2 xV  as 

 
.)()( 2

2,1 dx

dW
xWxV 

   …(3) 

For the potential )(2 xV , the original potential )(1 xV  is not unique[6,7]. The argument is as 

follows. Suppose  2H  has another factorization 
†BB , where )(ˆ xWB dx

d  , then, 
††

2 BBAAH   but BBH †
1   is not AA†

 rather it defines a certain new Hamiltonian. For 

superpotential )(ˆ xW , the partner potential )(2 xV  is 

 ).(ˆ)(ˆ)( 2
2 xWxWxV     …(4) 

Consider the most general solution as )()()(ˆ xxWxW  , which demands that, 

 .0)(')()(2)(2  xxxWx    …(5) 

The solution of the above equation is    )(ln)( xIx dx
d

, where ')'()( 2
0 dxxxI x    and   

is a constant. Therefore, we obtain, 

 
 .)(ln)()(ˆ  xI

dx

d
xWxW

  …(6) 

The corresponding one-parameter family of potentials ),(1̂ xV  is given as 

 
)).)((ln(2)(),(ˆ

2

2

11   xI
dx

d
xVxV

 …(7) 

The normalized ground state wave function corresponding to the potential ),(1̂ xV  reads, 

   
,

)(

)()1(
),(ˆ 0

0 








xI

x
x

  …(8) 



[17] 

 

where )1,0(  . The eqs. (7) and (8) represent the one-parameter family of isospectral 
potentials and wave functions, which shall be used to obtain the spectrum of the charged particle 
for a class of non-uniform magnetic fields. 
 
Spectrum for Charged Particle in Non-
Uniform Magnetic Fields 
 
The spectrum of charged particle is obtained 
for one and two dimensions separately. In the 
first case, we consider that the magnetic field 

has only a z component and depends only upon 
one coordinate, say y. With the asymmetric 
choice of the gauge, Ay = Az =0, we obtain [4], 

(choose 1),e c    

 

  22 2 2 ( )y z x x zP P P eA y m H y E       
    …(9) 
 

The variables Px and Py are constants of 
motion and can be considered as constants. 
The  wave function is only a function of y. We 
choose an Ax(y) such that the above equation 
becomes equivalent to a Schrödinger equation 
with a solvable potential. For the choice Ax 

(y)=-H0y,  the equation becomes Schrödinger 
equation for an harmonic oscillator [28]. Let 
us choose the vector potential Ax(y)= -H0 tanh 
y  and the corresponding magnetic field 

  2
0 secZH y H h y

. The eq. (9) reduces to, 

 

   2 2 2 2 2 2 22 tanh sec ,y x x zP P y h y E m P P                …(10) 
 

Here 0 0eH H   . Since Px and Py   are constants, therefore we can choose Px= Py=0. The eq. 
(10) is reduced in the form of one- dimensional Schrödinger equation with a Rosen- Morse 
potential [29]. Introducing the notations,  

 
2 2 2 .zm P E       Satisfies the differential equation,  

2
2

2 sec 0
d

h y
dy

 
 

  
     …(11) 

The differential equation can be converted into the hypergeometric equation by change of variable 

1
(1 tan )

2
y  

 and the transformation  

sec ( ),h y F y   

Where  =  . The differential equation satisfied by ( )F   is,  
 

   (1 ) ''( ) ( 1) 2 ( 1) '( ) ( 1) ( ) 0F F F                 
  …(12) 

 

The solution of the above equation, which corresponds to y   is given by the hyper 
geometric function  

2 ,   
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F      
 

                 
   

For   to be finite, we must have,  
1

21 1
.

4 2
n      

   
For n=0, the normalized ground state can be calculated as  

 

0 0

1
( ) sec .

1
,

2

A y h y
 

 
 
 
     …(13) 

Using eqs. (7), (8) and (13), one can calculate I (y), 0Â and 
ˆ

zH  for different values of  . All the 

members of the family 
ˆ ( , )zH y   give same spectrum as the undeformed magnetic field. We 

obtain,  

 

 
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0

2

1
2 , 1 sec

2
ˆ

1 2 ( )
, 2 1
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
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      …(14)             

  

2 2
2

2

8(2 1)sec 1 cosh 2 ( ) ( )ˆ ( ) sec
1

2 1 2 1 , 1 cosh ( )
2

z

h y y g y f y
H y h y

y g y

 


   

  
 

     
     …(15) 

Where  

g(y) = Hypergeometric 2F1

2 2 21 1 3
, , ,cosh sec sinh

2 2 2
y h y y    

   
and  

 
 2 2 1

( ) (2 1) 1 cosh sec 2 1 , tanh
2

f y y h y y                 

The non-uniform magnetic field is plotted for different values of   and   in Figs.1 and 2. The 
flux for deformed magnetic field is obtained as  

  

ˆˆ
zH





   
     … (16) 

It is found that even though the undeformed 

and deformed magnetic fields zH and 
ˆ

zH  are 
different, but the corresponding flux is same. 
Another choice of Ax(y) that leads to exactly 

solvable equation is Ax(y)= 
 1 ye 

 and 

we get Hz(y) = .ye  The Pauli equation 
reduces to a one–dimensional Schrödinger 
equation with Morse potential [30]. Choosing 
the constants Px=Py=0 and introducing the 
notations, 

 
2 2 2

zg E m P      
22f     
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The differential equation for   is obtained as,  
2

2 2
2 ( ) 0.y yd

g fe e y
dy

 
 

    
     …(17) 

The equation is transformed to Laguerre’s 

equation by the change of variable 2 yx e  
and the transformation 

/ 2( ) ( ).g xy x e G x    The function G is the 

associated Laguerre polynomial 
2 ( ).g
nL x

 
So, the wave function in terms of variable y is 
written as [4].  

 

 
   2( ) 2 2

g y gy e y
n ny e e L e  

 
 

 

and the energy eigenvalues are calculated as 
2 2 22 .zE m P n n     The ground state 

wave function reads  

 0 ( ) 2
yy ey e e

   
    …(18) 

 Now, we can calculate the deformed wave function and the family of magnetic fields which has 

the same spectrum. The deformed ground state wave function ( 2)for   is,  

 

 

2 2

4 2 3

1 16
ˆ

128 3 1
3 12 24 32

3 128 128

ye y

ye y y y

e

e e e e

 
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 






      
   …(19)  

and the deformed magnetic field reads,  
   

 

4 2 3 4

2
2 3 4

1024 3 9 12 8 3 1 1
ˆ ( ) 2

3 12 24 32 3 1

yy y y y e y

y
z

yy y y e

e e e e e e
H y e

e e e e





         
          …(20) 

 
The deformed magnetic field is plotted for 
different positive and negative values of 
deformation parameter in Figs. 3 and 4. The 
flux for the deformed magnetic field is same as 
that for undeformed magnetic field.  

Now we consider the problem of 
charged particle in two dimensions. The Pauli-
Hamiltonian for the motion of charged particle 
in magnetic field for this case is given by. 

 

     22
2 .x x y y zz

H P A P A A      
  …(21) 

We choose  
( ), ( ),xA Byf Ay Bxf        …(22)  

Where 
2 2x y  

 and B  is a constant then the  magnetic field is given by,  
2 ( ) '( ).zB Bf B f        …(23) 

Eq. (21) takes the form  

  
2 2

2 2 2
2 22 2 2 ' ,z z

d d
H B f BfL Bf B f

dx dy
   

 
       

   
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where  zL is the z- component of the orbital angular momentum operator. To solve the 
corresponding Schrodinger equation in cylindrical coordinates, the wave function is factorized as 

 , ) ( ) imR e    
 and upon substituting    1/ 2 ,R A  

 we obtain,  

2
2

2 2 2
2 2

1
42 2 '( ) ( ) 2 ( )

md
B f Bf Bmf B f A EA

d
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 

    
        
  

     …(25)  

For 0m  , the left hand side can be written as 
†a a  where, 

1
2

md
a B f

d


 


  

    …(26) 
The ground state wave function  is obtained by solving the equation  

0

1
2 ( ) 0

md
Bpf A

d


 

  
   

 
     …(27) 

and we get,  
1

2
0 ( )

m B fd
A N e

 
 

 
    ...(28) 

Using isospectral Hamiltonian formalism, the ground state wave function for the one parameter 
family of isospectral potentials is given by, 

0
0

(1 ) ( )ˆ ( , )
( )

A
A

I

  
 

 



    …(29) 

The corresponding f̂ can be calculated as  

1ˆ ( ).
d

f f In I
B d


 

  
   …(30) 

The isospectral magnetic field is given by  

 1ˆ .z z

d d
B B In I

d d
 

  
 

   
    …(31) 

The flux for 
ˆ

zB  is calculated as 

2

0

ˆ 2 ( )z

d d
B d In I d

d d
    

 

  
      

 
 

…(32) 
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Now, we can choose the different forms of f i.e. different magnetic fields and calculate the 
isospectral family of non-uniform magnetic fields which give the same spectra as that of the 

undeformed magnetic field. For the choice, f = tanh /  , the magnetic field is  

2tanh
seczB B h

 


 
  

     …(33) 
and the corresponding ground state wave function reads,  

 
1

2
0 (sec )

m BA N h  



   …(34) 

 
Through the spectrum is not exactly known, but once the ground state is obtained, this approach 
can be applied to obtain the deformed magnetic field which will give same spectrum. We can 

calculate   0
ˆˆ, ,I A f

 and B̂  for each value of m so that one has a family of magnetic fields all 

of which give same spectrum. 
ˆ

zB is calculated as, 
 

 
   

2 2 2 2 2 2 2sec secˆ 2 2 2 tanh
m B m B

z z

N h N h
B B m B

I I

    
   

 
         …(35) 

where N is the normalization and  
 

   2 12 2sec .
BmI N h d      

 
Thus, a family of magnetic fields with same 
spectrum is obtained. The magnetic fields are 
plotted for m =0 and m = -1 and for different 
values of deformation parameter λ in Fig.5-7. 

As 
ˆ, z zB B     i.e. for these values 

of λ, we get back the undeformed magnetic 
field. Though the undeformed and deformed 
magnetic fields are different but the 
corresponding flux is found to be same. One 
can also obtain the multiparameter family of 
magnetic fields ˆBz (λ1, λ2, ...), all of which 
also give the same spectrum by following the 
work of Keung et al. [31]. 
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Fig.1. Magnetic field 
ˆ ( )H z  for  ξ=3 and for λ =0.1 (small dash), λ =0.5 (dotted line), λ =2.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 2.  Magnetic field 
ˆ ( )H z for  ξ=5 and for λ =-1.1 (small dash), λ =-1.5 (dotted line), λ =-3.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 3.  Deformed Magnetic field 
ˆ ( )H z for λ =0.001 (small dash), λ =0.1 (dotted line), λ =1.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 4.  Deformed Magnetic field 
ˆ ( )H z for λ =-1.01 (small dash), λ =-1.1 (dotted line), λ =-2.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 5.  Magnetic field 
ˆ ( )B z for $m=0$ and for λ =-1.1 (small dash), λ =-1.5 (dotted line), λ =-5.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 6.  Magnetic field  
ˆ ( )B z for m=-1 and for λ =0.1 (small dash), λ =0.5 (dotted line), λ =3.0 

(large dash) and solid line represents undeformed magnetic field 
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Fig. 7. Magnetic field  
ˆ ( )B z for m=-1 and for λ =-1.01 (small dash), λ =-1.1 (dotted line), λ =-2.0 

(large dash) and solid line represents undeformed magnetic field 


